首页> 外文OA文献 >A correction method for systematic error in 1H-NMR time-course data validated through stochastic cell culture simulation
【2h】

A correction method for systematic error in 1H-NMR time-course data validated through stochastic cell culture simulation

机译:通过随机细胞培养模拟验证的1H-NMR时程数据中系统误差的校正方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: The growing ubiquity of metabolomic techniques has facilitated high frequency time-course data collection for an increasing number of applications. While the concentration trends of individual metabolites can be modeled with common curve fitting techniques, a more accurate representation of the data needs to consider effects that act on more than one metabolite in a given sample. To this end, we present a simple algorithm that uses nonparametric smoothing carried out on all observed metabolites at once to identify and correct systematic error from dilution effects. In addition, we develop a simulation of metabolite concentration time-course trends to supplement available data and explore algorithm performance. Although we focus on nuclear magnetic resonance (NMR) analysis in the context of cell culture, a number of possible extensions are discussed. Results: Realistic metabolic data was successfully simulated using a 4-step process. Starting with a set of metabolite concentration time-courses from a metabolomic experiment, each time-course was classified as either increasing, decreasing, concave, or approximately constant. Trend shapes were simulated from generic functions corresponding to each classification. The resulting shapes were then scaled to simulated compound concentrations. Finally, the scaled trends were perturbed using a combination of random and systematic errors. To detect systematic errors, a nonparametric fit was applied to each trend and percent deviations calculated at every timepoint. Systematic errors could be identified at time-points where the median percent deviation exceeded a threshold value, determined by the choice of smoothing model and the number of observed trends. Regardless of model, increasing the number of observations over a time-course resulted in more accurate error estimates, although the improvement was not particularly large between 10 and 20 samples per trend. The presented algorithm was able to identify systematic errors as small as 2.5 % under a wide range of conditions. Conclusion: Both the simulation framework and error correction method represent examples of time-course analysis that can be applied to further developments in 1H-NMR methodology and the more general application of quantitative metabolomics. © 2015 Sokolenko and Aucoin.
机译:背景:代谢组学技术的日益普及为越来越多的应用提供了高频时程数据收集的便利。尽管可以使用常见的曲线拟合技术对单个代谢物的浓度趋势进行建模,但要更准确地表示数据,需要考虑作用于给定样品中多种代谢物的作用。为此,我们提出了一种简单的算法,该算法使用对所有观察到的代谢物立即进行的非参数平滑来识别和校正稀释效应引起的系统误差。此外,我们开发了代谢物浓度时程趋势的模拟,以补充可用数据并探索算法性能。尽管我们专注于细胞培养背景下的核磁共振(NMR)分析,但仍讨论了许多可能的扩展。结果:使用4个步骤成功地模拟了真实的代谢数据。从代谢组学实验的一组代谢物浓度时间过程开始,每个时间过程被分类为增加,减少,凹入或近似恒定。从对应于每个分类的通用函数模拟趋势形状。然后将得到的形状缩放到模拟化合物浓度。最后,使用随机误差和系统误差的组合来扰动定标趋势。为了检测系统误差,将非参数拟合应用于每个趋势,并在每个时间点计算百分比偏差。可以在平均偏差百分比超过阈值的时间点识别系统误差,该误差由平滑模型的选择和观察到的趋势的数量确定。不管使用哪种模型,在一个时间过程中增加观察次数都会导致更准确的误差估计,尽管每个趋势在10到20个样本之间的改进并不是特别大。所提出的算法能够在宽范围的条件下识别出2.5%的系统误差。结论:仿真框架和纠错方法均代表了时程分析的实例,这些实例可用于1H-NMR方法的进一步发展以及定量代谢组学的更广泛应用。 ©2015 Sokolenko和Aucoin。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号